changeset 268:c6ee3ad91edf

Clean xz-embedded.
author ray@terran.dlink.ua
date Tue, 10 Jan 2012 14:26:35 +0200
parents 2be191a25f65
children 3c64dd8a60d3
files head/sys/contrib/xz-embedded/xz.h head/sys/contrib/xz-embedded/xz_config.h head/sys/contrib/xz-embedded/xz_crc32.c head/sys/contrib/xz-embedded/xz_dec_bcj.c head/sys/contrib/xz-embedded/xz_dec_lzma2.c head/sys/contrib/xz-embedded/xz_dec_stream.c head/sys/contrib/xz-embedded/xz_lzma2.h head/sys/contrib/xz-embedded/xz_malloc.c head/sys/contrib/xz-embedded/xz_malloc.h head/sys/contrib/xz-embedded/xz_private.h head/sys/contrib/xz-embedded/xz_stream.h
diffstat 11 files changed, 0 insertions(+), 3379 deletions(-) [+]
line wrap: on
line diff
--- a/head/sys/contrib/xz-embedded/xz.h	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,268 +0,0 @@
-/*
- * XZ decompressor
- *
- * Authors: Lasse Collin <[email protected]>
- *          Igor Pavlov <http://7-zip.org/>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-#ifndef XZ_H
-#define XZ_H
-
-#	include <sys/stddef.h>
-#	include <sys/types.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* In Linux, this is used to make extern functions static when needed. */
-#ifndef XZ_EXTERN
-#	define XZ_EXTERN extern
-#endif
-
-/**
- * enum xz_mode - Operation mode
- *
- * @XZ_SINGLE:              Single-call mode. This uses less RAM than
- *                          than multi-call modes, because the LZMA2
- *                          dictionary doesn't need to be allocated as
- *                          part of the decoder state. All required data
- *                          structures are allocated at initialization,
- *                          so xz_dec_run() cannot return XZ_MEM_ERROR.
- * @XZ_PREALLOC:            Multi-call mode with preallocated LZMA2
- *                          dictionary buffer. All data structures are
- *                          allocated at initialization, so xz_dec_run()
- *                          cannot return XZ_MEM_ERROR.
- * @XZ_DYNALLOC:            Multi-call mode. The LZMA2 dictionary is
- *                          allocated once the required size has been
- *                          parsed from the stream headers. If the
- *                          allocation fails, xz_dec_run() will return
- *                          XZ_MEM_ERROR.
- *
- * It is possible to enable support only for a subset of the above
- * modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC,
- * or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled
- * with support for all operation modes, but the preboot code may
- * be built with fewer features to minimize code size.
- */
-enum xz_mode {
-	XZ_SINGLE,
-	XZ_PREALLOC,
-	XZ_DYNALLOC
-};
-
-/**
- * enum xz_ret - Return codes
- * @XZ_OK:                  Everything is OK so far. More input or more
- *                          output space is required to continue. This
- *                          return code is possible only in multi-call mode
- *                          (XZ_PREALLOC or XZ_DYNALLOC).
- * @XZ_STREAM_END:          Operation finished successfully.
- * @XZ_UNSUPPORTED_CHECK:   Integrity check type is not supported. Decoding
- *                          is still possible in multi-call mode by simply
- *                          calling xz_dec_run() again.
- *                          Note that this return value is used only if
- *                          XZ_DEC_ANY_CHECK was defined at build time,
- *                          which is not used in the kernel. Unsupported
- *                          check types return XZ_OPTIONS_ERROR if
- *                          XZ_DEC_ANY_CHECK was not defined at build time.
- * @XZ_MEM_ERROR:           Allocating memory failed. This return code is
- *                          possible only if the decoder was initialized
- *                          with XZ_DYNALLOC. The amount of memory that was
- *                          tried to be allocated was no more than the
- *                          dict_max argument given to xz_dec_init().
- * @XZ_MEMLIMIT_ERROR:      A bigger LZMA2 dictionary would be needed than
- *                          allowed by the dict_max argument given to
- *                          xz_dec_init(). This return value is possible
- *                          only in multi-call mode (XZ_PREALLOC or
- *                          XZ_DYNALLOC); the single-call mode (XZ_SINGLE)
- *                          ignores the dict_max argument.
- * @XZ_FORMAT_ERROR:        File format was not recognized (wrong magic
- *                          bytes).
- * @XZ_OPTIONS_ERROR:       This implementation doesn't support the requested
- *                          compression options. In the decoder this means
- *                          that the header CRC32 matches, but the header
- *                          itself specifies something that we don't support.
- * @XZ_DATA_ERROR:          Compressed data is corrupt.
- * @XZ_BUF_ERROR:           Cannot make any progress. Details are slightly
- *                          different between multi-call and single-call
- *                          mode; more information below.
- *
- * In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
- * to XZ code cannot consume any input and cannot produce any new output.
- * This happens when there is no new input available, or the output buffer
- * is full while at least one output byte is still pending. Assuming your
- * code is not buggy, you can get this error only when decoding a compressed
- * stream that is truncated or otherwise corrupt.
- *
- * In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
- * is too small or the compressed input is corrupt in a way that makes the
- * decoder produce more output than the caller expected. When it is
- * (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
- * is used instead of XZ_BUF_ERROR.
- */
-enum xz_ret {
-	XZ_OK,
-	XZ_STREAM_END,
-	XZ_UNSUPPORTED_CHECK,
-	XZ_MEM_ERROR,
-	XZ_MEMLIMIT_ERROR,
-	XZ_FORMAT_ERROR,
-	XZ_OPTIONS_ERROR,
-	XZ_DATA_ERROR,
-	XZ_BUF_ERROR
-};
-
-/**
- * struct xz_buf - Passing input and output buffers to XZ code
- * @in:         Beginning of the input buffer. This may be NULL if and only
- *              if in_pos is equal to in_size.
- * @in_pos:     Current position in the input buffer. This must not exceed
- *              in_size.
- * @in_size:    Size of the input buffer
- * @out:        Beginning of the output buffer. This may be NULL if and only
- *              if out_pos is equal to out_size.
- * @out_pos:    Current position in the output buffer. This must not exceed
- *              out_size.
- * @out_size:   Size of the output buffer
- *
- * Only the contents of the output buffer from out[out_pos] onward, and
- * the variables in_pos and out_pos are modified by the XZ code.
- */
-struct xz_buf {
-	const uint8_t *in;
-	size_t in_pos;
-	size_t in_size;
-
-	uint8_t *out;
-	size_t out_pos;
-	size_t out_size;
-};
-
-/**
- * struct xz_dec - Opaque type to hold the XZ decoder state
- */
-struct xz_dec;
-
-/**
- * xz_dec_init() - Allocate and initialize a XZ decoder state
- * @mode:       Operation mode
- * @dict_max:   Maximum size of the LZMA2 dictionary (history buffer) for
- *              multi-call decoding. This is ignored in single-call mode
- *              (mode == XZ_SINGLE). LZMA2 dictionary is always 2^n bytes
- *              or 2^n + 2^(n-1) bytes (the latter sizes are less common
- *              in practice), so other values for dict_max don't make sense.
- *              In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
- *              512 KiB, and 1 MiB are probably the only reasonable values,
- *              except for kernel and initramfs images where a bigger
- *              dictionary can be fine and useful.
- *
- * Single-call mode (XZ_SINGLE): xz_dec_run() decodes the whole stream at
- * once. The caller must provide enough output space or the decoding will
- * fail. The output space is used as the dictionary buffer, which is why
- * there is no need to allocate the dictionary as part of the decoder's
- * internal state.
- *
- * Because the output buffer is used as the workspace, streams encoded using
- * a big dictionary are not a problem in single-call mode. It is enough that
- * the output buffer is big enough to hold the actual uncompressed data; it
- * can be smaller than the dictionary size stored in the stream headers.
- *
- * Multi-call mode with preallocated dictionary (XZ_PREALLOC): dict_max bytes
- * of memory is preallocated for the LZMA2 dictionary. This way there is no
- * risk that xz_dec_run() could run out of memory, since xz_dec_run() will
- * never allocate any memory. Instead, if the preallocated dictionary is too
- * small for decoding the given input stream, xz_dec_run() will return
- * XZ_MEMLIMIT_ERROR. Thus, it is important to know what kind of data will be
- * decoded to avoid allocating excessive amount of memory for the dictionary.
- *
- * Multi-call mode with dynamically allocated dictionary (XZ_DYNALLOC):
- * dict_max specifies the maximum allowed dictionary size that xz_dec_run()
- * may allocate once it has parsed the dictionary size from the stream
- * headers. This way excessive allocations can be avoided while still
- * limiting the maximum memory usage to a sane value to prevent running the
- * system out of memory when decompressing streams from untrusted sources.
- *
- * On success, xz_dec_init() returns a pointer to struct xz_dec, which is
- * ready to be used with xz_dec_run(). If memory allocation fails,
- * xz_dec_init() returns NULL.
- */
-XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max);
-
-/**
- * xz_dec_run() - Run the XZ decoder
- * @s:          Decoder state allocated using xz_dec_init()
- * @b:          Input and output buffers
- *
- * The possible return values depend on build options and operation mode.
- * See enum xz_ret for details.
- *
- * Note that if an error occurs in single-call mode (return value is not
- * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
- * contents of the output buffer from b->out[b->out_pos] onward are
- * undefined. This is true even after XZ_BUF_ERROR, because with some filter
- * chains, there may be a second pass over the output buffer, and this pass
- * cannot be properly done if the output buffer is truncated. Thus, you
- * cannot give the single-call decoder a too small buffer and then expect to
- * get that amount valid data from the beginning of the stream. You must use
- * the multi-call decoder if you don't want to uncompress the whole stream.
- */
-XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
-
-/**
- * xz_dec_reset() - Reset an already allocated decoder state
- * @s:          Decoder state allocated using xz_dec_init()
- *
- * This function can be used to reset the multi-call decoder state without
- * freeing and reallocating memory with xz_dec_end() and xz_dec_init().
- *
- * In single-call mode, xz_dec_reset() is always called in the beginning of
- * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
- * multi-call mode.
- */
-XZ_EXTERN void xz_dec_reset(struct xz_dec *s);
-
-/**
- * xz_dec_end() - Free the memory allocated for the decoder state
- * @s:          Decoder state allocated using xz_dec_init(). If s is NULL,
- *              this function does nothing.
- */
-XZ_EXTERN void xz_dec_end(struct xz_dec *s);
-
-/*
- * Standalone build (userspace build or in-kernel build for boot time use)
- * needs a CRC32 implementation. For normal in-kernel use, kernel's own
- * CRC32 module is used instead, and users of this module don't need to
- * care about the functions below.
- */
-#ifndef XZ_INTERNAL_CRC32
-#	ifdef __KERNEL__
-#		define XZ_INTERNAL_CRC32 0
-#	else
-#		define XZ_INTERNAL_CRC32 1
-#	endif
-#endif
-
-#if XZ_INTERNAL_CRC32
-/*
- * This must be called before any other xz_* function to initialize
- * the CRC32 lookup table.
- */
-XZ_EXTERN void xz_crc32_init(void);
-
-/*
- * Update CRC32 value using the polynomial from IEEE-802.3. To start a new
- * calculation, the third argument must be zero. To continue the calculation,
- * the previously returned value is passed as the third argument.
- */
-XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc);
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
--- a/head/sys/contrib/xz-embedded/xz_config.h	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,47 +0,0 @@
-
-#ifndef __XZ_CONFIH_H__
-#define __XZ_CONFIH_H__
-
-
-#include <sys/endian.h>
-#include <sys/types.h>
-#include <sys/systm.h>
-
-#include <contrib/xz-embedded/xz.h>
-#include "xz_malloc.h"
-
-#define XZ_DEC_SINGLE 1
-#define XZ_PREBOOT 1
-#undef XZ_EXTERN
-#define XZ_EXTERN extern
-#undef STATIC
-#define STATIC
-#undef INIT
-#define INIT
-
-#undef bool
-#undef true
-#undef false
-#define bool 	int
-#define true 	1
-#define false	0
-
-#define kmalloc(size, flags) xz_malloc(size)
-#define kfree(ptr) xz_free(ptr)
-#define vmalloc(size) xz_malloc(size)
-#define vfree(ptr) xz_free(ptr)
-
-#define memeq(a, b, size) (memcmp(a, b, size) == 0)
-#define memzero(buf, size) bzero(buf, size)
-
-#ifndef min
-#	define min(x, y) ((x) < (y) ? (x) : (y))
-#endif
-#define min_t(type, x, y) min(x, y)
-
-#define get_le32(ptr) le32toh(*(const uint32_t *)(ptr))
-
-#endif /* __XZ_CONFIH_H__ */
-
-
-
--- a/head/sys/contrib/xz-embedded/xz_crc32.c	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,59 +0,0 @@
-/*
- * CRC32 using the polynomial from IEEE-802.3
- *
- * Authors: Lasse Collin <[email protected]>
- *          Igor Pavlov <http://7-zip.org/>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-/*
- * This is not the fastest implementation, but it is pretty compact.
- * The fastest versions of xz_crc32() on modern CPUs without hardware
- * accelerated CRC instruction are 3-5 times as fast as this version,
- * but they are bigger and use more memory for the lookup table.
- */
-
-#include "xz_private.h"
-
-/*
- * STATIC_RW_DATA is used in the pre-boot environment on some architectures.
- * See <linux/decompress/mm.h> for details.
- */
-#ifndef STATIC_RW_DATA
-#	define STATIC_RW_DATA static
-#endif
-
-STATIC_RW_DATA uint32_t xz_crc32_table[256];
-
-XZ_EXTERN void xz_crc32_init(void)
-{
-	const uint32_t poly = 0xEDB88320;
-
-	uint32_t i;
-	uint32_t j;
-	uint32_t r;
-
-	for (i = 0; i < 256; ++i) {
-		r = i;
-		for (j = 0; j < 8; ++j)
-			r = (r >> 1) ^ (poly & ~((r & 1) - 1));
-
-		xz_crc32_table[i] = r;
-	}
-
-	return;
-}
-
-XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
-{
-	crc = ~crc;
-
-	while (size != 0) {
-		crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
-		--size;
-	}
-
-	return ~crc;
-}
--- a/head/sys/contrib/xz-embedded/xz_dec_bcj.c	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,561 +0,0 @@
-/*
- * Branch/Call/Jump (BCJ) filter decoders
- *
- * Authors: Lasse Collin <[email protected]ani.org>
- *          Igor Pavlov <http://7-zip.org/>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-#include "xz_private.h"
-
-/*
- * The rest of the file is inside this ifdef. It makes things a little more
- * convenient when building without support for any BCJ filters.
- */
-#ifdef XZ_DEC_BCJ
-
-struct xz_dec_bcj {
-	/* Type of the BCJ filter being used */
-	enum {
-		BCJ_X86 = 4,        /* x86 or x86-64 */
-		BCJ_POWERPC = 5,    /* Big endian only */
-		BCJ_IA64 = 6,       /* Big or little endian */
-		BCJ_ARM = 7,        /* Little endian only */
-		BCJ_ARMTHUMB = 8,   /* Little endian only */
-		BCJ_SPARC = 9       /* Big or little endian */
-	} type;
-
-	/*
-	 * Return value of the next filter in the chain. We need to preserve
-	 * this information across calls, because we must not call the next
-	 * filter anymore once it has returned XZ_STREAM_END.
-	 */
-	enum xz_ret ret;
-
-	/* True if we are operating in single-call mode. */
-	bool single_call;
-
-	/*
-	 * Absolute position relative to the beginning of the uncompressed
-	 * data (in a single .xz Block). We care only about the lowest 32
-	 * bits so this doesn't need to be uint64_t even with big files.
-	 */
-	uint32_t pos;
-
-	/* x86 filter state */
-	uint32_t x86_prev_mask;
-
-	/* Temporary space to hold the variables from struct xz_buf */
-	uint8_t *out;
-	size_t out_pos;
-	size_t out_size;
-
-	struct {
-		/* Amount of already filtered data in the beginning of buf */
-		size_t filtered;
-
-		/* Total amount of data currently stored in buf  */
-		size_t size;
-
-		/*
-		 * Buffer to hold a mix of filtered and unfiltered data. This
-		 * needs to be big enough to hold Alignment + 2 * Look-ahead:
-		 *
-		 * Type         Alignment   Look-ahead
-		 * x86              1           4
-		 * PowerPC          4           0
-		 * IA-64           16           0
-		 * ARM              4           0
-		 * ARM-Thumb        2           2
-		 * SPARC            4           0
-		 */
-		uint8_t buf[16];
-	} temp;
-};
-
-#ifdef XZ_DEC_X86
-/*
- * This is used to test the most significant byte of a memory address
- * in an x86 instruction.
- */
-static inline int bcj_x86_test_msbyte(uint8_t b)
-{
-	return b == 0x00 || b == 0xFF;
-}
-
-static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-{
-	static const bool mask_to_allowed_status[8]
-		= { true, true, true, false, true, false, false, false };
-
-	static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
-
-	size_t i;
-	size_t prev_pos = (size_t)-1;
-	uint32_t prev_mask = s->x86_prev_mask;
-	uint32_t src;
-	uint32_t dest;
-	uint32_t j;
-	uint8_t b;
-
-	if (size <= 4)
-		return 0;
-
-	size -= 4;
-	for (i = 0; i < size; ++i) {
-		if ((buf[i] & 0xFE) != 0xE8)
-			continue;
-
-		prev_pos = i - prev_pos;
-		if (prev_pos > 3) {
-			prev_mask = 0;
-		} else {
-			prev_mask = (prev_mask << (prev_pos - 1)) & 7;
-			if (prev_mask != 0) {
-				b = buf[i + 4 - mask_to_bit_num[prev_mask]];
-				if (!mask_to_allowed_status[prev_mask]
-						|| bcj_x86_test_msbyte(b)) {
-					prev_pos = i;
-					prev_mask = (prev_mask << 1) | 1;
-					continue;
-				}
-			}
-		}
-
-		prev_pos = i;
-
-		if (bcj_x86_test_msbyte(buf[i + 4])) {
-			src = get_unaligned_le32(buf + i + 1);
-			while (true) {
-				dest = src - (s->pos + (uint32_t)i + 5);
-				if (prev_mask == 0)
-					break;
-
-				j = mask_to_bit_num[prev_mask] * 8;
-				b = (uint8_t)(dest >> (24 - j));
-				if (!bcj_x86_test_msbyte(b))
-					break;
-
-				src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
-			}
-
-			dest &= 0x01FFFFFF;
-			dest |= (uint32_t)0 - (dest & 0x01000000);
-			put_unaligned_le32(dest, buf + i + 1);
-			i += 4;
-		} else {
-			prev_mask = (prev_mask << 1) | 1;
-		}
-	}
-
-	prev_pos = i - prev_pos;
-	s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
-	return i;
-}
-#endif
-
-#ifdef XZ_DEC_POWERPC
-static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-{
-	size_t i;
-	uint32_t instr;
-
-	for (i = 0; i + 4 <= size; i += 4) {
-		instr = get_unaligned_be32(buf + i);
-		if ((instr & 0xFC000003) == 0x48000001) {
-			instr &= 0x03FFFFFC;
-			instr -= s->pos + (uint32_t)i;
-			instr &= 0x03FFFFFC;
-			instr |= 0x48000001;
-			put_unaligned_be32(instr, buf + i);
-		}
-	}
-
-	return i;
-}
-#endif
-
-#ifdef XZ_DEC_IA64
-static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-{
-	static const uint8_t branch_table[32] = {
-		0, 0, 0, 0, 0, 0, 0, 0,
-		0, 0, 0, 0, 0, 0, 0, 0,
-		4, 4, 6, 6, 0, 0, 7, 7,
-		4, 4, 0, 0, 4, 4, 0, 0
-	};
-
-	/*
-	 * The local variables take a little bit stack space, but it's less
-	 * than what LZMA2 decoder takes, so it doesn't make sense to reduce
-	 * stack usage here without doing that for the LZMA2 decoder too.
-	 */
-
-	/* Loop counters */
-	size_t i;
-	size_t j;
-
-	/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
-	uint32_t slot;
-
-	/* Bitwise offset of the instruction indicated by slot */
-	uint32_t bit_pos;
-
-	/* bit_pos split into byte and bit parts */
-	uint32_t byte_pos;
-	uint32_t bit_res;
-
-	/* Address part of an instruction */
-	uint32_t addr;
-
-	/* Mask used to detect which instructions to convert */
-	uint32_t mask;
-
-	/* 41-bit instruction stored somewhere in the lowest 48 bits */
-	uint64_t instr;
-
-	/* Instruction normalized with bit_res for easier manipulation */
-	uint64_t norm;
-
-	for (i = 0; i + 16 <= size; i += 16) {
-		mask = branch_table[buf[i] & 0x1F];
-		for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
-			if (((mask >> slot) & 1) == 0)
-				continue;
-
-			byte_pos = bit_pos >> 3;
-			bit_res = bit_pos & 7;
-			instr = 0;
-			for (j = 0; j < 6; ++j)
-				instr |= (uint64_t)(buf[i + j + byte_pos])
-						<< (8 * j);
-
-			norm = instr >> bit_res;
-
-			if (((norm >> 37) & 0x0F) == 0x05
-					&& ((norm >> 9) & 0x07) == 0) {
-				addr = (norm >> 13) & 0x0FFFFF;
-				addr |= ((uint32_t)(norm >> 36) & 1) << 20;
-				addr <<= 4;
-				addr -= s->pos + (uint32_t)i;
-				addr >>= 4;
-
-				norm &= ~((uint64_t)0x8FFFFF << 13);
-				norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
-				norm |= (uint64_t)(addr & 0x100000)
-						<< (36 - 20);
-
-				instr &= (1 << bit_res) - 1;
-				instr |= norm << bit_res;
-
-				for (j = 0; j < 6; j++)
-					buf[i + j + byte_pos]
-						= (uint8_t)(instr >> (8 * j));
-			}
-		}
-	}
-
-	return i;
-}
-#endif
-
-#ifdef XZ_DEC_ARM
-static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-{
-	size_t i;
-	uint32_t addr;
-
-	for (i = 0; i + 4 <= size; i += 4) {
-		if (buf[i + 3] == 0xEB) {
-			addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
-					| ((uint32_t)buf[i + 2] << 16);
-			addr <<= 2;
-			addr -= s->pos + (uint32_t)i + 8;
-			addr >>= 2;
-			buf[i] = (uint8_t)addr;
-			buf[i + 1] = (uint8_t)(addr >> 8);
-			buf[i + 2] = (uint8_t)(addr >> 16);
-		}
-	}
-
-	return i;
-}
-#endif
-
-#ifdef XZ_DEC_ARMTHUMB
-static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-{
-	size_t i;
-	uint32_t addr;
-
-	for (i = 0; i + 4 <= size; i += 2) {
-		if ((buf[i + 1] & 0xF8) == 0xF0
-				&& (buf[i + 3] & 0xF8) == 0xF8) {
-			addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
-					| ((uint32_t)buf[i] << 11)
-					| (((uint32_t)buf[i + 3] & 0x07) << 8)
-					| (uint32_t)buf[i + 2];
-			addr <<= 1;
-			addr -= s->pos + (uint32_t)i + 4;
-			addr >>= 1;
-			buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
-			buf[i] = (uint8_t)(addr >> 11);
-			buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
-			buf[i + 2] = (uint8_t)addr;
-			i += 2;
-		}
-	}
-
-	return i;
-}
-#endif
-
-#ifdef XZ_DEC_SPARC
-static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-{
-	size_t i;
-	uint32_t instr;
-
-	for (i = 0; i + 4 <= size; i += 4) {
-		instr = get_unaligned_be32(buf + i);
-		if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
-			instr <<= 2;
-			instr -= s->pos + (uint32_t)i;
-			instr >>= 2;
-			instr = ((uint32_t)0x40000000 - (instr & 0x400000))
-					| 0x40000000 | (instr & 0x3FFFFF);
-			put_unaligned_be32(instr, buf + i);
-		}
-	}
-
-	return i;
-}
-#endif
-
-/*
- * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
- * of data that got filtered.
- *
- * NOTE: This is implemented as a switch statement to avoid using function
- * pointers, which could be problematic in the kernel boot code, which must
- * avoid pointers to static data (at least on x86).
- */
-static void bcj_apply(struct xz_dec_bcj *s,
-		      uint8_t *buf, size_t *pos, size_t size)
-{
-	size_t filtered;
-
-	buf += *pos;
-	size -= *pos;
-
-	switch (s->type) {
-#ifdef XZ_DEC_X86
-	case BCJ_X86:
-		filtered = bcj_x86(s, buf, size);
-		break;
-#endif
-#ifdef XZ_DEC_POWERPC
-	case BCJ_POWERPC:
-		filtered = bcj_powerpc(s, buf, size);
-		break;
-#endif
-#ifdef XZ_DEC_IA64
-	case BCJ_IA64:
-		filtered = bcj_ia64(s, buf, size);
-		break;
-#endif
-#ifdef XZ_DEC_ARM
-	case BCJ_ARM:
-		filtered = bcj_arm(s, buf, size);
-		break;
-#endif
-#ifdef XZ_DEC_ARMTHUMB
-	case BCJ_ARMTHUMB:
-		filtered = bcj_armthumb(s, buf, size);
-		break;
-#endif
-#ifdef XZ_DEC_SPARC
-	case BCJ_SPARC:
-		filtered = bcj_sparc(s, buf, size);
-		break;
-#endif
-	default:
-		/* Never reached but silence compiler warnings. */
-		filtered = 0;
-		break;
-	}
-
-	*pos += filtered;
-	s->pos += filtered;
-}
-
-/*
- * Flush pending filtered data from temp to the output buffer.
- * Move the remaining mixture of possibly filtered and unfiltered
- * data to the beginning of temp.
- */
-static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
-{
-	size_t copy_size;
-
-	copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
-	memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
-	b->out_pos += copy_size;
-
-	s->temp.filtered -= copy_size;
-	s->temp.size -= copy_size;
-	memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
-}
-
-/*
- * The BCJ filter functions are primitive in sense that they process the
- * data in chunks of 1-16 bytes. To hide this issue, this function does
- * some buffering.
- */
-XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
-				     struct xz_dec_lzma2 *lzma2,
-				     struct xz_buf *b)
-{
-	size_t out_start;
-
-	/*
-	 * Flush pending already filtered data to the output buffer. Return
-	 * immediatelly if we couldn't flush everything, or if the next
-	 * filter in the chain had already returned XZ_STREAM_END.
-	 */
-	if (s->temp.filtered > 0) {
-		bcj_flush(s, b);
-		if (s->temp.filtered > 0)
-			return XZ_OK;
-
-		if (s->ret == XZ_STREAM_END)
-			return XZ_STREAM_END;
-	}
-
-	/*
-	 * If we have more output space than what is currently pending in
-	 * temp, copy the unfiltered data from temp to the output buffer
-	 * and try to fill the output buffer by decoding more data from the
-	 * next filter in the chain. Apply the BCJ filter on the new data
-	 * in the output buffer. If everything cannot be filtered, copy it
-	 * to temp and rewind the output buffer position accordingly.
-	 */
-	if (s->temp.size < b->out_size - b->out_pos) {
-		out_start = b->out_pos;
-		memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
-		b->out_pos += s->temp.size;
-
-		s->ret = xz_dec_lzma2_run(lzma2, b);
-		if (s->ret != XZ_STREAM_END
-				&& (s->ret != XZ_OK || s->single_call))
-			return s->ret;
-
-		bcj_apply(s, b->out, &out_start, b->out_pos);
-
-		/*
-		 * As an exception, if the next filter returned XZ_STREAM_END,
-		 * we can do that too, since the last few bytes that remain
-		 * unfiltered are meant to remain unfiltered.
-		 */
-		if (s->ret == XZ_STREAM_END)
-			return XZ_STREAM_END;
-
-		s->temp.size = b->out_pos - out_start;
-		b->out_pos -= s->temp.size;
-		memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
-	}
-
-	/*
-	 * If we have unfiltered data in temp, try to fill by decoding more
-	 * data from the next filter. Apply the BCJ filter on temp. Then we
-	 * hopefully can fill the actual output buffer by copying filtered
-	 * data from temp. A mix of filtered and unfiltered data may be left
-	 * in temp; it will be taken care on the next call to this function.
-	 */
-	if (s->temp.size > 0) {
-		/* Make b->out{,_pos,_size} temporarily point to s->temp. */
-		s->out = b->out;
-		s->out_pos = b->out_pos;
-		s->out_size = b->out_size;
-		b->out = s->temp.buf;
-		b->out_pos = s->temp.size;
-		b->out_size = sizeof(s->temp.buf);
-
-		s->ret = xz_dec_lzma2_run(lzma2, b);
-
-		s->temp.size = b->out_pos;
-		b->out = s->out;
-		b->out_pos = s->out_pos;
-		b->out_size = s->out_size;
-
-		if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
-			return s->ret;
-
-		bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
-
-		/*
-		 * If the next filter returned XZ_STREAM_END, we mark that
-		 * everything is filtered, since the last unfiltered bytes
-		 * of the stream are meant to be left as is.
-		 */
-		if (s->ret == XZ_STREAM_END)
-			s->temp.filtered = s->temp.size;
-
-		bcj_flush(s, b);
-		if (s->temp.filtered > 0)
-			return XZ_OK;
-	}
-
-	return s->ret;
-}
-
-XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call)
-{
-	struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
-	if (s != NULL)
-		s->single_call = single_call;
-
-	return s;
-}
-
-XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
-{
-	switch (id) {
-#ifdef XZ_DEC_X86
-	case BCJ_X86:
-#endif
-#ifdef XZ_DEC_POWERPC
-	case BCJ_POWERPC:
-#endif
-#ifdef XZ_DEC_IA64
-	case BCJ_IA64:
-#endif
-#ifdef XZ_DEC_ARM
-	case BCJ_ARM:
-#endif
-#ifdef XZ_DEC_ARMTHUMB
-	case BCJ_ARMTHUMB:
-#endif
-#ifdef XZ_DEC_SPARC
-	case BCJ_SPARC:
-#endif
-		break;
-
-	default:
-		/* Unsupported Filter ID */
-		return XZ_OPTIONS_ERROR;
-	}
-
-	s->type = id;
-	s->ret = XZ_OK;
-	s->pos = 0;
-	s->x86_prev_mask = 0;
-	s->temp.filtered = 0;
-	s->temp.size = 0;
-
-	return XZ_OK;
-}
-
-#endif
--- a/head/sys/contrib/xz-embedded/xz_dec_lzma2.c	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1171 +0,0 @@
-/*
- * LZMA2 decoder
- *
- * Authors: Lasse Collin <[email protected]>
- *          Igor Pavlov <http://7-zip.org/>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-#include "xz_private.h"
-#include "xz_lzma2.h"
-
-/*
- * Range decoder initialization eats the first five bytes of each LZMA chunk.
- */
-#define RC_INIT_BYTES 5
-
-/*
- * Minimum number of usable input buffer to safely decode one LZMA symbol.
- * The worst case is that we decode 22 bits using probabilities and 26
- * direct bits. This may decode at maximum of 20 bytes of input. However,
- * lzma_main() does an extra normalization before returning, thus we
- * need to put 21 here.
- */
-#define LZMA_IN_REQUIRED 21
-
-/*
- * Dictionary (history buffer)
- *
- * These are always true:
- *    start <= pos <= full <= end
- *    pos <= limit <= end
- *
- * In multi-call mode, also these are true:
- *    end == size
- *    size <= size_max
- *    allocated <= size
- *
- * Most of these variables are size_t to support single-call mode,
- * in which the dictionary variables address the actual output
- * buffer directly.
- */
-struct dictionary {
-	/* Beginning of the history buffer */
-	uint8_t *buf;
-
-	/* Old position in buf (before decoding more data) */
-	size_t start;
-
-	/* Position in buf */
-	size_t pos;
-
-	/*
-	 * How full dictionary is. This is used to detect corrupt input that
-	 * would read beyond the beginning of the uncompressed stream.
-	 */
-	size_t full;
-
-	/* Write limit; we don't write to buf[limit] or later bytes. */
-	size_t limit;
-
-	/*
-	 * End of the dictionary buffer. In multi-call mode, this is
-	 * the same as the dictionary size. In single-call mode, this
-	 * indicates the size of the output buffer.
-	 */
-	size_t end;
-
-	/*
-	 * Size of the dictionary as specified in Block Header. This is used
-	 * together with "full" to detect corrupt input that would make us
-	 * read beyond the beginning of the uncompressed stream.
-	 */
-	uint32_t size;
-
-	/*
-	 * Maximum allowed dictionary size in multi-call mode.
-	 * This is ignored in single-call mode.
-	 */
-	uint32_t size_max;
-
-	/*
-	 * Amount of memory currently allocated for the dictionary.
-	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
-	 * size_max is always the same as the allocated size.)
-	 */
-	uint32_t allocated;
-
-	/* Operation mode */
-	enum xz_mode mode;
-};
-
-/* Range decoder */
-struct rc_dec {
-	uint32_t range;
-	uint32_t code;
-
-	/*
-	 * Number of initializing bytes remaining to be read
-	 * by rc_read_init().
-	 */
-	uint32_t init_bytes_left;
-
-	/*
-	 * Buffer from which we read our input. It can be either
-	 * temp.buf or the caller-provided input buffer.
-	 */
-	const uint8_t *in;
-	size_t in_pos;
-	size_t in_limit;
-};
-
-/* Probabilities for a length decoder. */
-struct lzma_len_dec {
-	/* Probability of match length being at least 10 */
-	uint16_t choice;
-
-	/* Probability of match length being at least 18 */
-	uint16_t choice2;
-
-	/* Probabilities for match lengths 2-9 */
-	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
-
-	/* Probabilities for match lengths 10-17 */
-	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
-
-	/* Probabilities for match lengths 18-273 */
-	uint16_t high[LEN_HIGH_SYMBOLS];
-};
-
-struct lzma_dec {
-	/* Distances of latest four matches */
-	uint32_t rep0;
-	uint32_t rep1;
-	uint32_t rep2;
-	uint32_t rep3;
-
-	/* Types of the most recently seen LZMA symbols */
-	enum lzma_state state;
-
-	/*
-	 * Length of a match. This is updated so that dict_repeat can
-	 * be called again to finish repeating the whole match.
-	 */
-	uint32_t len;
-
-	/*
-	 * LZMA properties or related bit masks (number of literal
-	 * context bits, a mask dervied from the number of literal
-	 * position bits, and a mask dervied from the number
-	 * position bits)
-	 */
-	uint32_t lc;
-	uint32_t literal_pos_mask; /* (1 << lp) - 1 */
-	uint32_t pos_mask;         /* (1 << pb) - 1 */
-
-	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
-	uint16_t is_match[STATES][POS_STATES_MAX];
-
-	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
-	uint16_t is_rep[STATES];
-
-	/*
-	 * If 0, distance of a repeated match is rep0.
-	 * Otherwise check is_rep1.
-	 */
-	uint16_t is_rep0[STATES];
-
-	/*
-	 * If 0, distance of a repeated match is rep1.
-	 * Otherwise check is_rep2.
-	 */
-	uint16_t is_rep1[STATES];
-
-	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
-	uint16_t is_rep2[STATES];
-
-	/*
-	 * If 1, the repeated match has length of one byte. Otherwise
-	 * the length is decoded from rep_len_decoder.
-	 */
-	uint16_t is_rep0_long[STATES][POS_STATES_MAX];
-
-	/*
-	 * Probability tree for the highest two bits of the match
-	 * distance. There is a separate probability tree for match
-	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
-	 */
-	uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
-
-	/*
-	 * Probility trees for additional bits for match distance
-	 * when the distance is in the range [4, 127].
-	 */
-	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
-
-	/*
-	 * Probability tree for the lowest four bits of a match
-	 * distance that is equal to or greater than 128.
-	 */
-	uint16_t dist_align[ALIGN_SIZE];
-
-	/* Length of a normal match */
-	struct lzma_len_dec match_len_dec;
-
-	/* Length of a repeated match */
-	struct lzma_len_dec rep_len_dec;
-
-	/* Probabilities of literals */
-	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
-};
-
-struct lzma2_dec {
-	/* Position in xz_dec_lzma2_run(). */
-	enum lzma2_seq {
-		SEQ_CONTROL,
-		SEQ_UNCOMPRESSED_1,
-		SEQ_UNCOMPRESSED_2,
-		SEQ_COMPRESSED_0,
-		SEQ_COMPRESSED_1,
-		SEQ_PROPERTIES,
-		SEQ_LZMA_PREPARE,
-		SEQ_LZMA_RUN,
-		SEQ_COPY
-	} sequence;
-
-	/* Next position after decoding the compressed size of the chunk. */
-	enum lzma2_seq next_sequence;
-
-	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
-	uint32_t uncompressed;
-
-	/*
-	 * Compressed size of LZMA chunk or compressed/uncompressed
-	 * size of uncompressed chunk (64 KiB at maximum)
-	 */
-	uint32_t compressed;
-
-	/*
-	 * True if dictionary reset is needed. This is false before
-	 * the first chunk (LZMA or uncompressed).
-	 */
-	bool need_dict_reset;
-
-	/*
-	 * True if new LZMA properties are needed. This is false
-	 * before the first LZMA chunk.
-	 */
-	bool need_props;
-};
-
-struct xz_dec_lzma2 {
-	/*
-	 * The order below is important on x86 to reduce code size and
-	 * it shouldn't hurt on other platforms. Everything up to and
-	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
-	 * which allows using smaller instructions to access those
-	 * variables. On x86-64, fewer variables fit into the first 128
-	 * bytes, but this is still the best order without sacrificing
-	 * the readability by splitting the structures.
-	 */
-	struct rc_dec rc;
-	struct dictionary dict;
-	struct lzma2_dec lzma2;
-	struct lzma_dec lzma;
-
-	/*
-	 * Temporary buffer which holds small number of input bytes between
-	 * decoder calls. See lzma2_lzma() for details.
-	 */
-	struct {
-		uint32_t size;
-		uint8_t buf[3 * LZMA_IN_REQUIRED];
-	} temp;
-};
-
-/**************
- * Dictionary *
- **************/
-
-/*
- * Reset the dictionary state. When in single-call mode, set up the beginning
- * of the dictionary to point to the actual output buffer.
- */
-static void dict_reset(struct dictionary *dict, struct xz_buf *b)
-{
-	if (DEC_IS_SINGLE(dict->mode)) {
-		dict->buf = b->out + b->out_pos;
-		dict->end = b->out_size - b->out_pos;
-	}
-
-	dict->start = 0;
-	dict->pos = 0;
-	dict->limit = 0;
-	dict->full = 0;
-}
-
-/* Set dictionary write limit */
-static void dict_limit(struct dictionary *dict, size_t out_max)
-{
-	if (dict->end - dict->pos <= out_max)
-		dict->limit = dict->end;
-	else
-		dict->limit = dict->pos + out_max;
-}
-
-/* Return true if at least one byte can be written into the dictionary. */
-static inline bool dict_has_space(const struct dictionary *dict)
-{
-	return dict->pos < dict->limit;
-}
-
-/*
- * Get a byte from the dictionary at the given distance. The distance is
- * assumed to valid, or as a special case, zero when the dictionary is
- * still empty. This special case is needed for single-call decoding to
- * avoid writing a '\0' to the end of the destination buffer.
- */
-static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
-{
-	size_t offset = dict->pos - dist - 1;
-
-	if (dist >= dict->pos)
-		offset += dict->end;
-
-	return dict->full > 0 ? dict->buf[offset] : 0;
-}
-
-/*
- * Put one byte into the dictionary. It is assumed that there is space for it.
- */
-static inline void dict_put(struct dictionary *dict, uint8_t byte)
-{
-	dict->buf[dict->pos++] = byte;
-
-	if (dict->full < dict->pos)
-		dict->full = dict->pos;
-}
-
-/*
- * Repeat given number of bytes from the given distance. If the distance is
- * invalid, false is returned. On success, true is returned and *len is
- * updated to indicate how many bytes were left to be repeated.
- */
-static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
-{
-	size_t back;
-	uint32_t left;
-
-	if (dist >= dict->full || dist >= dict->size)
-		return false;
-
-	left = min_t(size_t, dict->limit - dict->pos, *len);
-	*len -= left;
-
-	back = dict->pos - dist - 1;
-	if (dist >= dict->pos)
-		back += dict->end;
-
-	do {
-		dict->buf[dict->pos++] = dict->buf[back++];
-		if (back == dict->end)
-			back = 0;
-	} while (--left > 0);
-
-	if (dict->full < dict->pos)
-		dict->full = dict->pos;
-
-	return true;
-}
-
-/* Copy uncompressed data as is from input to dictionary and output buffers. */
-static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
-			      uint32_t *left)
-{
-	size_t copy_size;
-
-	while (*left > 0 && b->in_pos < b->in_size
-			&& b->out_pos < b->out_size) {
-		copy_size = min(b->in_size - b->in_pos,
-				b->out_size - b->out_pos);
-		if (copy_size > dict->end - dict->pos)
-			copy_size = dict->end - dict->pos;
-		if (copy_size > *left)
-			copy_size = *left;
-
-		*left -= copy_size;
-
-		memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
-		dict->pos += copy_size;
-
-		if (dict->full < dict->pos)
-			dict->full = dict->pos;
-
-		if (DEC_IS_MULTI(dict->mode)) {
-			if (dict->pos == dict->end)
-				dict->pos = 0;
-
-			memcpy(b->out + b->out_pos, b->in + b->in_pos,
-					copy_size);
-		}
-
-		dict->start = dict->pos;
-
-		b->out_pos += copy_size;
-		b->in_pos += copy_size;
-	}
-}
-
-/*
- * Flush pending data from dictionary to b->out. It is assumed that there is
- * enough space in b->out. This is guaranteed because caller uses dict_limit()
- * before decoding data into the dictionary.
- */
-static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
-{
-	size_t copy_size = dict->pos - dict->start;
-
-	if (DEC_IS_MULTI(dict->mode)) {
-		if (dict->pos == dict->end)
-			dict->pos = 0;
-
-		memcpy(b->out + b->out_pos, dict->buf + dict->start,
-				copy_size);
-	}
-
-	dict->start = dict->pos;
-	b->out_pos += copy_size;
-	return copy_size;
-}
-
-/*****************
- * Range decoder *
- *****************/
-
-/* Reset the range decoder. */
-static void rc_reset(struct rc_dec *rc)
-{
-	rc->range = (uint32_t)-1;
-	rc->code = 0;
-	rc->init_bytes_left = RC_INIT_BYTES;
-}
-
-/*
- * Read the first five initial bytes into rc->code if they haven't been
- * read already. (Yes, the first byte gets completely ignored.)
- */
-static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
-{
-	while (rc->init_bytes_left > 0) {
-		if (b->in_pos == b->in_size)
-			return false;
-
-		rc->code = (rc->code << 8) + b->in[b->in_pos++];
-		--rc->init_bytes_left;
-	}
-
-	return true;
-}
-
-/* Return true if there may not be enough input for the next decoding loop. */
-static inline bool rc_limit_exceeded(const struct rc_dec *rc)
-{
-	return rc->in_pos > rc->in_limit;
-}
-
-/*
- * Return true if it is possible (from point of view of range decoder) that
- * we have reached the end of the LZMA chunk.
- */
-static inline bool rc_is_finished(const struct rc_dec *rc)
-{
-	return rc->code == 0;
-}
-
-/* Read the next input byte if needed. */
-static __always_inline void rc_normalize(struct rc_dec *rc)
-{
-	if (rc->range < RC_TOP_VALUE) {
-		rc->range <<= RC_SHIFT_BITS;
-		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
-	}
-}
-
-/*
- * Decode one bit. In some versions, this function has been splitted in three
- * functions so that the compiler is supposed to be able to more easily avoid
- * an extra branch. In this particular version of the LZMA decoder, this
- * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
- * on x86). Using a non-splitted version results in nicer looking code too.
- *
- * NOTE: This must return an int. Do not make it return a bool or the speed
- * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
- * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
- */
-static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
-{
-	uint32_t bound;
-	int bit;
-
-	rc_normalize(rc);
-	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
-	if (rc->code < bound) {
-		rc->range = bound;
-		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
-		bit = 0;
-	} else {
-		rc->range -= bound;
-		rc->code -= bound;
-		*prob -= *prob >> RC_MOVE_BITS;
-		bit = 1;
-	}
-
-	return bit;
-}
-
-/* Decode a bittree starting from the most significant bit. */
-static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
-					   uint16_t *probs, uint32_t limit)
-{
-	uint32_t symbol = 1;
-
-	do {
-		if (rc_bit(rc, &probs[symbol]))
-			symbol = (symbol << 1) + 1;
-		else
-			symbol <<= 1;
-	} while (symbol < limit);
-
-	return symbol;
-}
-
-/* Decode a bittree starting from the least significant bit. */
-static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
-					       uint16_t *probs,
-					       uint32_t *dest, uint32_t limit)
-{
-	uint32_t symbol = 1;
-	uint32_t i = 0;
-
-	do {
-		if (rc_bit(rc, &probs[symbol])) {
-			symbol = (symbol << 1) + 1;
-			*dest += 1 << i;
-		} else {
-			symbol <<= 1;
-		}
-	} while (++i < limit);
-}
-
-/* Decode direct bits (fixed fifty-fifty probability) */
-static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
-{
-	uint32_t mask;
-
-	do {
-		rc_normalize(rc);
-		rc->range >>= 1;
-		rc->code -= rc->range;
-		mask = (uint32_t)0 - (rc->code >> 31);
-		rc->code += rc->range & mask;
-		*dest = (*dest << 1) + (mask + 1);
-	} while (--limit > 0);
-}
-
-/********
- * LZMA *
- ********/
-
-/* Get pointer to literal coder probability array. */
-static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
-{
-	uint32_t prev_byte = dict_get(&s->dict, 0);
-	uint32_t low = prev_byte >> (8 - s->lzma.lc);
-	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
-	return s->lzma.literal[low + high];
-}
-
-/* Decode a literal (one 8-bit byte) */
-static void lzma_literal(struct xz_dec_lzma2 *s)
-{
-	uint16_t *probs;
-	uint32_t symbol;
-	uint32_t match_byte;
-	uint32_t match_bit;
-	uint32_t offset;
-	uint32_t i;
-
-	probs = lzma_literal_probs(s);
-
-	if (lzma_state_is_literal(s->lzma.state)) {
-		symbol = rc_bittree(&s->rc, probs, 0x100);
-	} else {
-		symbol = 1;
-		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
-		offset = 0x100;
-
-		do {
-			match_bit = match_byte & offset;
-			match_byte <<= 1;
-			i = offset + match_bit + symbol;
-
-			if (rc_bit(&s->rc, &probs[i])) {
-				symbol = (symbol << 1) + 1;
-				offset &= match_bit;
-			} else {
-				symbol <<= 1;
-				offset &= ~match_bit;
-			}
-		} while (symbol < 0x100);
-	}
-
-	dict_put(&s->dict, (uint8_t)symbol);
-	lzma_state_literal(&s->lzma.state);
-}
-
-/* Decode the length of the match into s->lzma.len. */
-static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
-		     uint32_t pos_state)
-{
-	uint16_t *probs;
-	uint32_t limit;
-
-	if (!rc_bit(&s->rc, &l->choice)) {
-		probs = l->low[pos_state];
-		limit = LEN_LOW_SYMBOLS;
-		s->lzma.len = MATCH_LEN_MIN;
-	} else {
-		if (!rc_bit(&s->rc, &l->choice2)) {
-			probs = l->mid[pos_state];
-			limit = LEN_MID_SYMBOLS;
-			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
-		} else {
-			probs = l->high;
-			limit = LEN_HIGH_SYMBOLS;
-			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
-					+ LEN_MID_SYMBOLS;
-		}
-	}
-
-	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
-}
-
-/* Decode a match. The distance will be stored in s->lzma.rep0. */
-static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
-{
-	uint16_t *probs;
-	uint32_t dist_slot;
-	uint32_t limit;
-
-	lzma_state_match(&s->lzma.state);
-
-	s->lzma.rep3 = s->lzma.rep2;
-	s->lzma.rep2 = s->lzma.rep1;
-	s->lzma.rep1 = s->lzma.rep0;
-
-	lzma_len(s, &s->lzma.match_len_dec, pos_state);
-
-	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
-	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
-
-	if (dist_slot < DIST_MODEL_START) {
-		s->lzma.rep0 = dist_slot;
-	} else {
-		limit = (dist_slot >> 1) - 1;
-		s->lzma.rep0 = 2 + (dist_slot & 1);
-
-		if (dist_slot < DIST_MODEL_END) {
-			s->lzma.rep0 <<= limit;
-			probs = s->lzma.dist_special + s->lzma.rep0
-					- dist_slot - 1;
-			rc_bittree_reverse(&s->rc, probs,
-					&s->lzma.rep0, limit);
-		} else {
-			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
-			s->lzma.rep0 <<= ALIGN_BITS;
-			rc_bittree_reverse(&s->rc, s->lzma.dist_align,
-					&s->lzma.rep0, ALIGN_BITS);
-		}
-	}
-}
-
-/*
- * Decode a repeated match. The distance is one of the four most recently
- * seen matches. The distance will be stored in s->lzma.rep0.
- */
-static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
-{
-	uint32_t tmp;
-
-	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
-		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
-				s->lzma.state][pos_state])) {
-			lzma_state_short_rep(&s->lzma.state);
-			s->lzma.len = 1;
-			return;
-		}
-	} else {
-		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
-			tmp = s->lzma.rep1;
-		} else {
-			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
-				tmp = s->lzma.rep2;
-			} else {
-				tmp = s->lzma.rep3;
-				s->lzma.rep3 = s->lzma.rep2;
-			}
-
-			s->lzma.rep2 = s->lzma.rep1;
-		}
-
-		s->lzma.rep1 = s->lzma.rep0;
-		s->lzma.rep0 = tmp;
-	}
-
-	lzma_state_long_rep(&s->lzma.state);
-	lzma_len(s, &s->lzma.rep_len_dec, pos_state);
-}
-
-/* LZMA decoder core */
-static bool lzma_main(struct xz_dec_lzma2 *s)
-{
-	uint32_t pos_state;
-
-	/*
-	 * If the dictionary was reached during the previous call, try to
-	 * finish the possibly pending repeat in the dictionary.
-	 */
-	if (dict_has_space(&s->dict) && s->lzma.len > 0)
-		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
-
-	/*
-	 * Decode more LZMA symbols. One iteration may consume up to
-	 * LZMA_IN_REQUIRED - 1 bytes.
-	 */
-	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
-		pos_state = s->dict.pos & s->lzma.pos_mask;
-
-		if (!rc_bit(&s->rc, &s->lzma.is_match[
-				s->lzma.state][pos_state])) {
-			lzma_literal(s);
-		} else {
-			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
-				lzma_rep_match(s, pos_state);
-			else
-				lzma_match(s, pos_state);
-
-			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
-				return false;
-		}
-	}
-
-	/*
-	 * Having the range decoder always normalized when we are outside
-	 * this function makes it easier to correctly handle end of the chunk.
-	 */
-	rc_normalize(&s->rc);
-
-	return true;
-}
-
-/*
- * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
- * here, because LZMA state may be reset without resetting the dictionary.
- */
-static void lzma_reset(struct xz_dec_lzma2 *s)
-{
-	uint16_t *probs;
-	size_t i;
-
-	s->lzma.state = STATE_LIT_LIT;
-	s->lzma.rep0 = 0;
-	s->lzma.rep1 = 0;
-	s->lzma.rep2 = 0;
-	s->lzma.rep3 = 0;
-
-	/*
-	 * All probabilities are initialized to the same value. This hack
-	 * makes the code smaller by avoiding a separate loop for each
-	 * probability array.
-	 *
-	 * This could be optimized so that only that part of literal
-	 * probabilities that are actually required. In the common case
-	 * we would write 12 KiB less.
-	 */
-	probs = s->lzma.is_match[0];
-	for (i = 0; i < PROBS_TOTAL; ++i)
-		probs[i] = RC_BIT_MODEL_TOTAL / 2;
-
-	rc_reset(&s->rc);
-}
-
-/*
- * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
- * from the decoded lp and pb values. On success, the LZMA decoder state is
- * reset and true is returned.
- */
-static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
-{
-	if (props > (4 * 5 + 4) * 9 + 8)
-		return false;
-
-	s->lzma.pos_mask = 0;
-	while (props >= 9 * 5) {
-		props -= 9 * 5;
-		++s->lzma.pos_mask;
-	}
-
-	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
-
-	s->lzma.literal_pos_mask = 0;
-	while (props >= 9) {
-		props -= 9;
-		++s->lzma.literal_pos_mask;
-	}
-
-	s->lzma.lc = props;
-
-	if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
-		return false;
-
-	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
-
-	lzma_reset(s);
-
-	return true;
-}
-
-/*********
- * LZMA2 *
- *********/
-
-/*
- * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
- * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
- * wrapper function takes care of making the LZMA decoder's assumption safe.
- *
- * As long as there is plenty of input left to be decoded in the current LZMA
- * chunk, we decode directly from the caller-supplied input buffer until
- * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
- * s->temp.buf, which (hopefully) gets filled on the next call to this
- * function. We decode a few bytes from the temporary buffer so that we can
- * continue decoding from the caller-supplied input buffer again.
- */
-static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
-{
-	size_t in_avail;
-	uint32_t tmp;
-
-	in_avail = b->in_size - b->in_pos;
-	if (s->temp.size > 0 || s->lzma2.compressed == 0) {
-		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
-		if (tmp > s->lzma2.compressed - s->temp.size)
-			tmp = s->lzma2.compressed - s->temp.size;
-		if (tmp > in_avail)
-			tmp = in_avail;
-
-		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
-
-		if (s->temp.size + tmp == s->lzma2.compressed) {
-			memzero(s->temp.buf + s->temp.size + tmp,
-					sizeof(s->temp.buf)
-						- s->temp.size - tmp);
-			s->rc.in_limit = s->temp.size + tmp;
-		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
-			s->temp.size += tmp;
-			b->in_pos += tmp;
-			return true;
-		} else {
-			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
-		}
-
-		s->rc.in = s->temp.buf;
-		s->rc.in_pos = 0;
-
-		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
-			return false;
-
-		s->lzma2.compressed -= s->rc.in_pos;
-
-		if (s->rc.in_pos < s->temp.size) {
-			s->temp.size -= s->rc.in_pos;
-			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
-					s->temp.size);
-			return true;
-		}
-
-		b->in_pos += s->rc.in_pos - s->temp.size;
-		s->temp.size = 0;
-	}
-
-	in_avail = b->in_size - b->in_pos;
-	if (in_avail >= LZMA_IN_REQUIRED) {
-		s->rc.in = b->in;
-		s->rc.in_pos = b->in_pos;
-
-		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
-			s->rc.in_limit = b->in_pos + s->lzma2.compressed;
-		else
-			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
-
-		if (!lzma_main(s))
-			return false;
-
-		in_avail = s->rc.in_pos - b->in_pos;
-		if (in_avail > s->lzma2.compressed)
-			return false;
-
-		s->lzma2.compressed -= in_avail;
-		b->in_pos = s->rc.in_pos;
-	}
-
-	in_avail = b->in_size - b->in_pos;
-	if (in_avail < LZMA_IN_REQUIRED) {
-		if (in_avail > s->lzma2.compressed)
-			in_avail = s->lzma2.compressed;
-
-		memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
-		s->temp.size = in_avail;
-		b->in_pos += in_avail;
-	}
-
-	return true;
-}
-
-/*
- * Take care of the LZMA2 control layer, and forward the job of actual LZMA
- * decoding or copying of uncompressed chunks to other functions.
- */
-XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
-				       struct xz_buf *b)
-{
-	uint32_t tmp;
-
-	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
-		switch (s->lzma2.sequence) {
-		case SEQ_CONTROL:
-			/*
-			 * LZMA2 control byte
-			 *
-			 * Exact values:
-			 *   0x00   End marker
-			 *   0x01   Dictionary reset followed by
-			 *          an uncompressed chunk
-			 *   0x02   Uncompressed chunk (no dictionary reset)
-			 *
-			 * Highest three bits (s->control & 0xE0):
-			 *   0xE0   Dictionary reset, new properties and state
-			 *          reset, followed by LZMA compressed chunk
-			 *   0xC0   New properties and state reset, followed
-			 *          by LZMA compressed chunk (no dictionary
-			 *          reset)
-			 *   0xA0   State reset using old properties,
-			 *          followed by LZMA compressed chunk (no
-			 *          dictionary reset)
-			 *   0x80   LZMA chunk (no dictionary or state reset)
-			 *
-			 * For LZMA compressed chunks, the lowest five bits
-			 * (s->control & 1F) are the highest bits of the
-			 * uncompressed size (bits 16-20).
-			 *
-			 * A new LZMA2 stream must begin with a dictionary
-			 * reset. The first LZMA chunk must set new
-			 * properties and reset the LZMA state.
-			 *
-			 * Values that don't match anything described above
-			 * are invalid and we return XZ_DATA_ERROR.
-			 */
-			tmp = b->in[b->in_pos++];
-
-			if (tmp >= 0xE0 || tmp == 0x01) {
-				s->lzma2.need_props = true;
-				s->lzma2.need_dict_reset = false;
-				dict_reset(&s->dict, b);
-			} else if (s->lzma2.need_dict_reset) {
-				return XZ_DATA_ERROR;
-			}
-
-			if (tmp >= 0x80) {
-				s->lzma2.uncompressed = (tmp & 0x1F) << 16;
-				s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
-
-				if (tmp >= 0xC0) {
-					/*
-					 * When there are new properties,
-					 * state reset is done at
-					 * SEQ_PROPERTIES.
-					 */
-					s->lzma2.need_props = false;
-					s->lzma2.next_sequence
-							= SEQ_PROPERTIES;
-
-				} else if (s->lzma2.need_props) {
-					return XZ_DATA_ERROR;
-
-				} else {
-					s->lzma2.next_sequence
-							= SEQ_LZMA_PREPARE;
-					if (tmp >= 0xA0)
-						lzma_reset(s);
-				}
-			} else {
-				if (tmp == 0x00)
-					return XZ_STREAM_END;
-
-				if (tmp > 0x02)
-					return XZ_DATA_ERROR;
-
-				s->lzma2.sequence = SEQ_COMPRESSED_0;
-				s->lzma2.next_sequence = SEQ_COPY;
-			}
-
-			break;
-
-		case SEQ_UNCOMPRESSED_1:
-			s->lzma2.uncompressed
-					+= (uint32_t)b->in[b->in_pos++] << 8;
-			s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
-			break;
-
-		case SEQ_UNCOMPRESSED_2:
-			s->lzma2.uncompressed
-					+= (uint32_t)b->in[b->in_pos++] + 1;
-			s->lzma2.sequence = SEQ_COMPRESSED_0;
-			break;
-
-		case SEQ_COMPRESSED_0:
-			s->lzma2.compressed
-					= (uint32_t)b->in[b->in_pos++] << 8;
-			s->lzma2.sequence = SEQ_COMPRESSED_1;
-			break;
-
-		case SEQ_COMPRESSED_1:
-			s->lzma2.compressed
-					+= (uint32_t)b->in[b->in_pos++] + 1;
-			s->lzma2.sequence = s->lzma2.next_sequence;
-			break;
-
-		case SEQ_PROPERTIES:
-			if (!lzma_props(s, b->in[b->in_pos++]))
-				return XZ_DATA_ERROR;
-
-			s->lzma2.sequence = SEQ_LZMA_PREPARE;
-
-		case SEQ_LZMA_PREPARE:
-			if (s->lzma2.compressed < RC_INIT_BYTES)
-				return XZ_DATA_ERROR;
-
-			if (!rc_read_init(&s->rc, b))
-				return XZ_OK;
-
-			s->lzma2.compressed -= RC_INIT_BYTES;
-			s->lzma2.sequence = SEQ_LZMA_RUN;
-
-		case SEQ_LZMA_RUN:
-			/*
-			 * Set dictionary limit to indicate how much we want
-			 * to be encoded at maximum. Decode new data into the
-			 * dictionary. Flush the new data from dictionary to
-			 * b->out. Check if we finished decoding this chunk.
-			 * In case the dictionary got full but we didn't fill
-			 * the output buffer yet, we may run this loop
-			 * multiple times without changing s->lzma2.sequence.
-			 */
-			dict_limit(&s->dict, min_t(size_t,
-					b->out_size - b->out_pos,
-					s->lzma2.uncompressed));
-			if (!lzma2_lzma(s, b))
-				return XZ_DATA_ERROR;
-
-			s->lzma2.uncompressed -= dict_flush(&s->dict, b);
-
-			if (s->lzma2.uncompressed == 0) {
-				if (s->lzma2.compressed > 0 || s->lzma.len > 0
-						|| !rc_is_finished(&s->rc))
-					return XZ_DATA_ERROR;
-
-				rc_reset(&s->rc);
-				s->lzma2.sequence = SEQ_CONTROL;
-
-			} else if (b->out_pos == b->out_size
-					|| (b->in_pos == b->in_size
-						&& s->temp.size
-						< s->lzma2.compressed)) {
-				return XZ_OK;
-			}
-
-			break;
-
-		case SEQ_COPY:
-			dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
-			if (s->lzma2.compressed > 0)
-				return XZ_OK;
-
-			s->lzma2.sequence = SEQ_CONTROL;
-			break;
-		}
-	}
-
-	return XZ_OK;
-}
-
-XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
-						   uint32_t dict_max)
-{
-	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
-	if (s == NULL)
-		return NULL;
-
-	s->dict.mode = mode;
-	s->dict.size_max = dict_max;
-
-	if (DEC_IS_PREALLOC(mode)) {
-		s->dict.buf = vmalloc(dict_max);
-		if (s->dict.buf == NULL) {
-			kfree(s);
-			return NULL;
-		}
-	} else if (DEC_IS_DYNALLOC(mode)) {
-		s->dict.buf = NULL;
-		s->dict.allocated = 0;
-	}
-
-	return s;
-}
-
-XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
-{
-	/* This limits dictionary size to 3 GiB to keep parsing simpler. */
-	if (props > 39)
-		return XZ_OPTIONS_ERROR;
-
-	s->dict.size = 2 + (props & 1);
-	s->dict.size <<= (props >> 1) + 11;
-
-	if (DEC_IS_MULTI(s->dict.mode)) {
-		if (s->dict.size > s->dict.size_max)
-			return XZ_MEMLIMIT_ERROR;
-
-		s->dict.end = s->dict.size;
-
-		if (DEC_IS_DYNALLOC(s->dict.mode)) {
-			if (s->dict.allocated < s->dict.size) {
-				vfree(s->dict.buf);
-				s->dict.buf = vmalloc(s->dict.size);
-				if (s->dict.buf == NULL) {
-					s->dict.allocated = 0;
-					return XZ_MEM_ERROR;
-				}
-			}
-		}
-	}
-
-	s->lzma.len = 0;
-
-	s->lzma2.sequence = SEQ_CONTROL;
-	s->lzma2.need_dict_reset = true;
-
-	s->temp.size = 0;
-
-	return XZ_OK;
-}
-
-XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
-{
-	if (DEC_IS_MULTI(s->dict.mode))
-		vfree(s->dict.buf);
-
-	kfree(s);
-}
--- a/head/sys/contrib/xz-embedded/xz_dec_stream.c	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,821 +0,0 @@
-/*
- * .xz Stream decoder
- *
- * Author: Lasse Collin <[email protected]>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-#include "xz_private.h"
-#include "xz_stream.h"
-
-/* Hash used to validate the Index field */
-struct xz_dec_hash {
-	vli_type unpadded;
-	vli_type uncompressed;
-	uint32_t crc32;
-};
-
-struct xz_dec {
-	/* Position in dec_main() */
-	enum {
-		SEQ_STREAM_HEADER,
-		SEQ_BLOCK_START,
-		SEQ_BLOCK_HEADER,
-		SEQ_BLOCK_UNCOMPRESS,
-		SEQ_BLOCK_PADDING,
-		SEQ_BLOCK_CHECK,
-		SEQ_INDEX,
-		SEQ_INDEX_PADDING,
-		SEQ_INDEX_CRC32,
-		SEQ_STREAM_FOOTER
-	} sequence;
-
-	/* Position in variable-length integers and Check fields */
-	uint32_t pos;
-
-	/* Variable-length integer decoded by dec_vli() */
-	vli_type vli;
-
-	/* Saved in_pos and out_pos */
-	size_t in_start;
-	size_t out_start;
-
-	/* CRC32 value in Block or Index */
-	uint32_t crc32;
-
-	/* Type of the integrity check calculated from uncompressed data */
-	enum xz_check check_type;
-
-	/* Operation mode */
-	enum xz_mode mode;
-
-	/*
-	 * True if the next call to xz_dec_run() is allowed to return
-	 * XZ_BUF_ERROR.
-	 */
-	bool allow_buf_error;
-
-	/* Information stored in Block Header */
-	struct {
-		/*
-		 * Value stored in the Compressed Size field, or
-		 * VLI_UNKNOWN if Compressed Size is not present.
-		 */
-		vli_type compressed;
-
-		/*
-		 * Value stored in the Uncompressed Size field, or
-		 * VLI_UNKNOWN if Uncompressed Size is not present.
-		 */
-		vli_type uncompressed;
-
-		/* Size of the Block Header field */
-		uint32_t size;
-	} block_header;
-
-	/* Information collected when decoding Blocks */
-	struct {
-		/* Observed compressed size of the current Block */
-		vli_type compressed;
-
-		/* Observed uncompressed size of the current Block */
-		vli_type uncompressed;
-
-		/* Number of Blocks decoded so far */
-		vli_type count;
-
-		/*
-		 * Hash calculated from the Block sizes. This is used to
-		 * validate the Index field.
-		 */
-		struct xz_dec_hash hash;
-	} block;
-
-	/* Variables needed when verifying the Index field */
-	struct {
-		/* Position in dec_index() */
-		enum {
-			SEQ_INDEX_COUNT,
-			SEQ_INDEX_UNPADDED,
-			SEQ_INDEX_UNCOMPRESSED
-		} sequence;
-
-		/* Size of the Index in bytes */
-		vli_type size;
-
-		/* Number of Records (matches block.count in valid files) */
-		vli_type count;
-
-		/*
-		 * Hash calculated from the Records (matches block.hash in
-		 * valid files).
-		 */
-		struct xz_dec_hash hash;
-	} index;
-
-	/*
-	 * Temporary buffer needed to hold Stream Header, Block Header,
-	 * and Stream Footer. The Block Header is the biggest (1 KiB)
-	 * so we reserve space according to that. buf[] has to be aligned
-	 * to a multiple of four bytes; the size_t variables before it
-	 * should guarantee this.
-	 */
-	struct {
-		size_t pos;
-		size_t size;
-		uint8_t buf[1024];
-	} temp;
-
-	struct xz_dec_lzma2 *lzma2;
-
-#ifdef XZ_DEC_BCJ
-	struct xz_dec_bcj *bcj;
-	bool bcj_active;
-#endif
-};
-
-#ifdef XZ_DEC_ANY_CHECK
-/* Sizes of the Check field with different Check IDs */
-static const uint8_t check_sizes[16] = {
-	0,
-	4, 4, 4,
-	8, 8, 8,
-	16, 16, 16,
-	32, 32, 32,
-	64, 64, 64
-};
-#endif
-
-/*
- * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
- * must have set s->temp.pos to indicate how much data we are supposed
- * to copy into s->temp.buf. Return true once s->temp.pos has reached
- * s->temp.size.
- */
-static bool fill_temp(struct xz_dec *s, struct xz_buf *b)
-{
-	size_t copy_size = min_t(size_t,
-			b->in_size - b->in_pos, s->temp.size - s->temp.pos);
-
-	memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
-	b->in_pos += copy_size;
-	s->temp.pos += copy_size;
-
-	if (s->temp.pos == s->temp.size) {
-		s->temp.pos = 0;
-		return true;
-	}
-
-	return false;
-}
-
-/* Decode a variable-length integer (little-endian base-128 encoding) */
-static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
-			   size_t *in_pos, size_t in_size)
-{
-	uint8_t byte;
-
-	if (s->pos == 0)
-		s->vli = 0;
-
-	while (*in_pos < in_size) {
-		byte = in[*in_pos];
-		++*in_pos;
-
-		s->vli |= (vli_type)(byte & 0x7F) << s->pos;
-
-		if ((byte & 0x80) == 0) {
-			/* Don't allow non-minimal encodings. */
-			if (byte == 0 && s->pos != 0)
-				return XZ_DATA_ERROR;
-
-			s->pos = 0;
-			return XZ_STREAM_END;
-		}
-
-		s->pos += 7;
-		if (s->pos == 7 * VLI_BYTES_MAX)
-			return XZ_DATA_ERROR;
-	}
-
-	return XZ_OK;
-}
-
-/*
- * Decode the Compressed Data field from a Block. Update and validate
- * the observed compressed and uncompressed sizes of the Block so that
- * they don't exceed the values possibly stored in the Block Header
- * (validation assumes that no integer overflow occurs, since vli_type
- * is normally uint64_t). Update the CRC32 if presence of the CRC32
- * field was indicated in Stream Header.
- *
- * Once the decoding is finished, validate that the observed sizes match
- * the sizes possibly stored in the Block Header. Update the hash and
- * Block count, which are later used to validate the Index field.
- */
-static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
-{
-	enum xz_ret ret;
-
-	s->in_start = b->in_pos;
-	s->out_start = b->out_pos;
-
-#ifdef XZ_DEC_BCJ
-	if (s->bcj_active)
-		ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
-	else
-#endif
-		ret = xz_dec_lzma2_run(s->lzma2, b);
-
-	s->block.compressed += b->in_pos - s->in_start;
-	s->block.uncompressed += b->out_pos - s->out_start;
-
-	/*
-	 * There is no need to separately check for VLI_UNKNOWN, since
-	 * the observed sizes are always smaller than VLI_UNKNOWN.
-	 */
-	if (s->block.compressed > s->block_header.compressed
-			|| s->block.uncompressed
-				> s->block_header.uncompressed)
-		return XZ_DATA_ERROR;
-
-	if (s->check_type == XZ_CHECK_CRC32)
-		s->crc32 = xz_crc32(b->out + s->out_start,
-				b->out_pos - s->out_start, s->crc32);
-
-	if (ret == XZ_STREAM_END) {
-		if (s->block_header.compressed != VLI_UNKNOWN
-				&& s->block_header.compressed
-					!= s->block.compressed)
-			return XZ_DATA_ERROR;
-
-		if (s->block_header.uncompressed != VLI_UNKNOWN
-				&& s->block_header.uncompressed
-					!= s->block.uncompressed)
-			return XZ_DATA_ERROR;
-
-		s->block.hash.unpadded += s->block_header.size
-				+ s->block.compressed;
-
-#ifdef XZ_DEC_ANY_CHECK
-		s->block.hash.unpadded += check_sizes[s->check_type];
-#else
-		if (s->check_type == XZ_CHECK_CRC32)
-			s->block.hash.unpadded += 4;
-#endif
-
-		s->block.hash.uncompressed += s->block.uncompressed;
-		s->block.hash.crc32 = xz_crc32(
-				(const uint8_t *)&s->block.hash,
-				sizeof(s->block.hash), s->block.hash.crc32);
-
-		++s->block.count;
-	}
-
-	return ret;
-}
-
-/* Update the Index size and the CRC32 value. */
-static void index_update(struct xz_dec *s, const struct xz_buf *b)
-{
-	size_t in_used = b->in_pos - s->in_start;
-	s->index.size += in_used;
-	s->crc32 = xz_crc32(b->in + s->in_start, in_used, s->crc32);
-}
-
-/*
- * Decode the Number of Records, Unpadded Size, and Uncompressed Size
- * fields from the Index field. That is, Index Padding and CRC32 are not
- * decoded by this function.
- *
- * This can return XZ_OK (more input needed), XZ_STREAM_END (everything
- * successfully decoded), or XZ_DATA_ERROR (input is corrupt).
- */
-static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
-{
-	enum xz_ret ret;
-
-	do {
-		ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
-		if (ret != XZ_STREAM_END) {
-			index_update(s, b);
-			return ret;
-		}
-
-		switch (s->index.sequence) {
-		case SEQ_INDEX_COUNT:
-			s->index.count = s->vli;
-
-			/*
-			 * Validate that the Number of Records field
-			 * indicates the same number of Records as
-			 * there were Blocks in the Stream.
-			 */
-			if (s->index.count != s->block.count)
-				return XZ_DATA_ERROR;
-
-			s->index.sequence = SEQ_INDEX_UNPADDED;
-			break;
-
-		case SEQ_INDEX_UNPADDED:
-			s->index.hash.unpadded += s->vli;
-			s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
-			break;
-
-		case SEQ_INDEX_UNCOMPRESSED:
-			s->index.hash.uncompressed += s->vli;
-			s->index.hash.crc32 = xz_crc32(
-					(const uint8_t *)&s->index.hash,
-					sizeof(s->index.hash),
-					s->index.hash.crc32);
-			--s->index.count;
-			s->index.sequence = SEQ_INDEX_UNPADDED;
-			break;
-		}
-	} while (s->index.count > 0);
-
-	return XZ_STREAM_END;
-}
-
-/*
- * Validate that the next four input bytes match the value of s->crc32.
- * s->pos must be zero when starting to validate the first byte.
- */
-static enum xz_ret crc32_validate(struct xz_dec *s, struct xz_buf *b)
-{
-	do {
-		if (b->in_pos == b->in_size)
-			return XZ_OK;
-
-		if (((s->crc32 >> s->pos) & 0xFF) != b->in[b->in_pos++])
-			return XZ_DATA_ERROR;
-
-		s->pos += 8;
-
-	} while (s->pos < 32);
-
-	s->crc32 = 0;
-	s->pos = 0;
-
-	return XZ_STREAM_END;
-}
-
-#ifdef XZ_DEC_ANY_CHECK
-/*
- * Skip over the Check field when the Check ID is not supported.
- * Returns true once the whole Check field has been skipped over.
- */
-static bool check_skip(struct xz_dec *s, struct xz_buf *b)
-{
-	while (s->pos < check_sizes[s->check_type]) {
-		if (b->in_pos == b->in_size)
-			return false;
-
-		++b->in_pos;
-		++s->pos;
-	}
-
-	s->pos = 0;
-
-	return true;
-}
-#endif
-
-/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
-static enum xz_ret dec_stream_header(struct xz_dec *s)
-{
-	if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
-		return XZ_FORMAT_ERROR;
-
-	if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
-			!= get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
-		return XZ_DATA_ERROR;
-
-	if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
-		return XZ_OPTIONS_ERROR;
-
-	/*
-	 * Of integrity checks, we support only none (Check ID = 0) and
-	 * CRC32 (Check ID = 1). However, if XZ_DEC_ANY_CHECK is defined,
-	 * we will accept other check types too, but then the check won't
-	 * be verified and a warning (XZ_UNSUPPORTED_CHECK) will be given.
-	 */
-	s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
-
-#ifdef XZ_DEC_ANY_CHECK
-	if (s->check_type > XZ_CHECK_MAX)
-		return XZ_OPTIONS_ERROR;
-
-	if (s->check_type > XZ_CHECK_CRC32)
-		return XZ_UNSUPPORTED_CHECK;
-#else
-	if (s->check_type > XZ_CHECK_CRC32)
-		return XZ_OPTIONS_ERROR;
-#endif
-
-	return XZ_OK;
-}
-
-/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
-static enum xz_ret dec_stream_footer(struct xz_dec *s)
-{
-	if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
-		return XZ_DATA_ERROR;
-
-	if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
-		return XZ_DATA_ERROR;
-
-	/*
-	 * Validate Backward Size. Note that we never added the size of the
-	 * Index CRC32 field to s->index.size, thus we use s->index.size / 4
-	 * instead of s->index.size / 4 - 1.
-	 */
-	if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
-		return XZ_DATA_ERROR;
-
-	if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
-		return XZ_DATA_ERROR;
-
-	/*
-	 * Use XZ_STREAM_END instead of XZ_OK to be more convenient
-	 * for the caller.
-	 */
-	return XZ_STREAM_END;
-}
-
-/* Decode the Block Header and initialize the filter chain. */
-static enum xz_ret dec_block_header(struct xz_dec *s)
-{
-	enum xz_ret ret;
-
-	/*
-	 * Validate the CRC32. We know that the temp buffer is at least
-	 * eight bytes so this is safe.
-	 */
-	s->temp.size -= 4;
-	if (xz_crc32(s->temp.buf, s->temp.size, 0)
-			!= get_le32(s->temp.buf + s->temp.size))
-		return XZ_DATA_ERROR;
-
-	s->temp.pos = 2;
-
-	/*
-	 * Catch unsupported Block Flags. We support only one or two filters
-	 * in the chain, so we catch that with the same test.
-	 */
-#ifdef XZ_DEC_BCJ
-	if (s->temp.buf[1] & 0x3E)
-#else
-	if (s->temp.buf[1] & 0x3F)
-#endif
-		return XZ_OPTIONS_ERROR;
-
-	/* Compressed Size */
-	if (s->temp.buf[1] & 0x40) {
-		if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
-					!= XZ_STREAM_END)
-			return XZ_DATA_ERROR;
-
-		s->block_header.compressed = s->vli;
-	} else {
-		s->block_header.compressed = VLI_UNKNOWN;
-	}
-
-	/* Uncompressed Size */
-	if (s->temp.buf[1] & 0x80) {
-		if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
-				!= XZ_STREAM_END)
-			return XZ_DATA_ERROR;
-
-		s->block_header.uncompressed = s->vli;
-	} else {
-		s->block_header.uncompressed = VLI_UNKNOWN;
-	}
-
-#ifdef XZ_DEC_BCJ
-	/* If there are two filters, the first one must be a BCJ filter. */
-	s->bcj_active = s->temp.buf[1] & 0x01;
-	if (s->bcj_active) {
-		if (s->temp.size - s->temp.pos < 2)
-			return XZ_OPTIONS_ERROR;
-
-		ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
-		if (ret != XZ_OK)
-			return ret;
-
-		/*
-		 * We don't support custom start offset,
-		 * so Size of Properties must be zero.
-		 */
-		if (s->temp.buf[s->temp.pos++] != 0x00)
-			return XZ_OPTIONS_ERROR;
-	}
-#endif
-
-	/* Valid Filter Flags always take at least two bytes. */
-	if (s->temp.size - s->temp.pos < 2)
-		return XZ_DATA_ERROR;
-
-	/* Filter ID = LZMA2 */
-	if (s->temp.buf[s->temp.pos++] != 0x21)
-		return XZ_OPTIONS_ERROR;
-
-	/* Size of Properties = 1-byte Filter Properties */
-	if (s->temp.buf[s->temp.pos++] != 0x01)
-		return XZ_OPTIONS_ERROR;
-
-	/* Filter Properties contains LZMA2 dictionary size. */
-	if (s->temp.size - s->temp.pos < 1)
-		return XZ_DATA_ERROR;
-
-	ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
-	if (ret != XZ_OK)
-		return ret;
-
-	/* The rest must be Header Padding. */
-	while (s->temp.pos < s->temp.size)
-		if (s->temp.buf[s->temp.pos++] != 0x00)
-			return XZ_OPTIONS_ERROR;
-
-	s->temp.pos = 0;
-	s->block.compressed = 0;
-	s->block.uncompressed = 0;
-
-	return XZ_OK;
-}
-
-static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
-{
-	enum xz_ret ret;
-
-	/*
-	 * Store the start position for the case when we are in the middle
-	 * of the Index field.
-	 */
-	s->in_start = b->in_pos;
-
-	while (true) {
-		switch (s->sequence) {
-		case SEQ_STREAM_HEADER:
-			/*
-			 * Stream Header is copied to s->temp, and then
-			 * decoded from there. This way if the caller
-			 * gives us only little input at a time, we can
-			 * still keep the Stream Header decoding code
-			 * simple. Similar approach is used in many places
-			 * in this file.
-			 */
-			if (!fill_temp(s, b))
-				return XZ_OK;
-
-			/*
-			 * If dec_stream_header() returns
-			 * XZ_UNSUPPORTED_CHECK, it is still possible
-			 * to continue decoding if working in multi-call
-			 * mode. Thus, update s->sequence before calling
-			 * dec_stream_header().
-			 */
-			s->sequence = SEQ_BLOCK_START;
-
-			ret = dec_stream_header(s);
-			if (ret != XZ_OK)
-				return ret;
-
-		case SEQ_BLOCK_START:
-			/* We need one byte of input to continue. */
-			if (b->in_pos == b->in_size)
-				return XZ_OK;
-
-			/* See if this is the beginning of the Index field. */
-			if (b->in[b->in_pos] == 0) {
-				s->in_start = b->in_pos++;
-				s->sequence = SEQ_INDEX;
-				break;
-			}
-
-			/*
-			 * Calculate the size of the Block Header and
-			 * prepare to decode it.
-			 */
-			s->block_header.size
-				= ((uint32_t)b->in[b->in_pos] + 1) * 4;
-
-			s->temp.size = s->block_header.size;
-			s->temp.pos = 0;
-			s->sequence = SEQ_BLOCK_HEADER;
-
-		case SEQ_BLOCK_HEADER:
-			if (!fill_temp(s, b))
-				return XZ_OK;
-
-			ret = dec_block_header(s);
-			if (ret != XZ_OK)
-				return ret;
-
-			s->sequence = SEQ_BLOCK_UNCOMPRESS;
-
-		case SEQ_BLOCK_UNCOMPRESS:
-			ret = dec_block(s, b);
-			if (ret != XZ_STREAM_END)
-				return ret;
-
-			s->sequence = SEQ_BLOCK_PADDING;
-
-		case SEQ_BLOCK_PADDING:
-			/*
-			 * Size of Compressed Data + Block Padding
-			 * must be a multiple of four. We don't need
-			 * s->block.compressed for anything else
-			 * anymore, so we use it here to test the size
-			 * of the Block Padding field.
-			 */
-			while (s->block.compressed & 3) {
-				if (b->in_pos == b->in_size)
-					return XZ_OK;
-
-				if (b->in[b->in_pos++] != 0)
-					return XZ_DATA_ERROR;
-
-				++s->block.compressed;
-			}
-
-			s->sequence = SEQ_BLOCK_CHECK;
-
-		case SEQ_BLOCK_CHECK:
-			if (s->check_type == XZ_CHECK_CRC32) {
-				ret = crc32_validate(s, b);
-				if (ret != XZ_STREAM_END)
-					return ret;
-			}
-#ifdef XZ_DEC_ANY_CHECK
-			else if (!check_skip(s, b)) {
-				return XZ_OK;
-			}
-#endif
-
-			s->sequence = SEQ_BLOCK_START;
-			break;
-
-		case SEQ_INDEX:
-			ret = dec_index(s, b);
-			if (ret != XZ_STREAM_END)
-				return ret;
-
-			s->sequence = SEQ_INDEX_PADDING;
-
-		case SEQ_INDEX_PADDING:
-			while ((s->index.size + (b->in_pos - s->in_start))
-					& 3) {
-				if (b->in_pos == b->in_size) {
-					index_update(s, b);
-					return XZ_OK;
-				}
-
-				if (b->in[b->in_pos++] != 0)
-					return XZ_DATA_ERROR;
-			}
-
-			/* Finish the CRC32 value and Index size. */
-			index_update(s, b);
-
-			/* Compare the hashes to validate the Index field. */
-			if (!memeq(&s->block.hash, &s->index.hash,
-					sizeof(s->block.hash)))
-				return XZ_DATA_ERROR;
-
-			s->sequence = SEQ_INDEX_CRC32;
-
-		case SEQ_INDEX_CRC32:
-			ret = crc32_validate(s, b);
-			if (ret != XZ_STREAM_END)
-				return ret;
-
-			s->temp.size = STREAM_HEADER_SIZE;
-			s->sequence = SEQ_STREAM_FOOTER;
-
-		case SEQ_STREAM_FOOTER:
-			if (!fill_temp(s, b))
-				return XZ_OK;
-
-			return dec_stream_footer(s);
-		}
-	}
-
-	/* Never reached */
-}
-
-/*
- * xz_dec_run() is a wrapper for dec_main() to handle some special cases in
- * multi-call and single-call decoding.
- *
- * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
- * are not going to make any progress anymore. This is to prevent the caller
- * from calling us infinitely when the input file is truncated or otherwise
- * corrupt. Since zlib-style API allows that the caller fills the input buffer
- * only when the decoder doesn't produce any new output, we have to be careful
- * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
- * after the second consecutive call to xz_dec_run() that makes no progress.
- *
- * In single-call mode, if we couldn't decode everything and no error
- * occurred, either the input is truncated or the output buffer is too small.
- * Since we know that the last input byte never produces any output, we know
- * that if all the input was consumed and decoding wasn't finished, the file
- * must be corrupt. Otherwise the output buffer has to be too small or the
- * file is corrupt in a way that decoding it produces too big output.
- *
- * If single-call decoding fails, we reset b->in_pos and b->out_pos back to
- * their original values. This is because with some filter chains there won't
- * be any valid uncompressed data in the output buffer unless the decoding
- * actually succeeds (that's the price to pay of using the output buffer as
- * the workspace).
- */
-XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
-{
-	size_t in_start;
-	size_t out_start;
-	enum xz_ret ret;
-
-	if (DEC_IS_SINGLE(s->mode))
-		xz_dec_reset(s);
-
-	in_start = b->in_pos;
-	out_start = b->out_pos;
-	ret = dec_main(s, b);
-
-	if (DEC_IS_SINGLE(s->mode)) {
-		if (ret == XZ_OK)
-			ret = b->in_pos == b->in_size
-					? XZ_DATA_ERROR : XZ_BUF_ERROR;
-
-		if (ret != XZ_STREAM_END) {
-			b->in_pos = in_start;
-			b->out_pos = out_start;
-		}
-
-	} else if (ret == XZ_OK && in_start == b->in_pos
-			&& out_start == b->out_pos) {
-		if (s->allow_buf_error)
-			ret = XZ_BUF_ERROR;
-
-		s->allow_buf_error = true;
-	} else {
-		s->allow_buf_error = false;
-	}
-
-	return ret;
-}
-
-XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max)
-{
-	struct xz_dec *s = kmalloc(sizeof(*s), GFP_KERNEL);
-	if (s == NULL)
-		return NULL;
-
-	s->mode = mode;
-
-#ifdef XZ_DEC_BCJ
-	s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
-	if (s->bcj == NULL)
-		goto error_bcj;
-#endif
-
-	s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
-	if (s->lzma2 == NULL)
-		goto error_lzma2;
-
-	xz_dec_reset(s);
-	return s;
-
-error_lzma2:
-#ifdef XZ_DEC_BCJ
-	xz_dec_bcj_end(s->bcj);
-error_bcj:
-#endif
-	kfree(s);
-	return NULL;
-}
-
-XZ_EXTERN void xz_dec_reset(struct xz_dec *s)
-{
-	s->sequence = SEQ_STREAM_HEADER;
-	s->allow_buf_error = false;
-	s->pos = 0;
-	s->crc32 = 0;
-	memzero(&s->block, sizeof(s->block));
-	memzero(&s->index, sizeof(s->index));
-	s->temp.pos = 0;
-	s->temp.size = STREAM_HEADER_SIZE;
-}
-
-XZ_EXTERN void xz_dec_end(struct xz_dec *s)
-{
-	if (s != NULL) {
-		xz_dec_lzma2_end(s->lzma2);
-#ifdef XZ_DEC_BCJ
-		xz_dec_bcj_end(s->bcj);
-#endif
-		kfree(s);
-	}
-}
--- a/head/sys/contrib/xz-embedded/xz_lzma2.h	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,204 +0,0 @@
-/*
- * LZMA2 definitions
- *
- * Authors: Lasse Collin <[email protected]>
- *          Igor Pavlov <http://7-zip.org/>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-#ifndef XZ_LZMA2_H
-#define XZ_LZMA2_H
-
-/* Range coder constants */
-#define RC_SHIFT_BITS 8
-#define RC_TOP_BITS 24
-#define RC_TOP_VALUE (1 << RC_TOP_BITS)
-#define RC_BIT_MODEL_TOTAL_BITS 11
-#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
-#define RC_MOVE_BITS 5
-
-/*
- * Maximum number of position states. A position state is the lowest pb
- * number of bits of the current uncompressed offset. In some places there
- * are different sets of probabilities for different position states.
- */
-#define POS_STATES_MAX (1 << 4)
-
-/*
- * This enum is used to track which LZMA symbols have occurred most recently
- * and in which order. This information is used to predict the next symbol.
- *
- * Symbols:
- *  - Literal: One 8-bit byte
- *  - Match: Repeat a chunk of data at some distance
- *  - Long repeat: Multi-byte match at a recently seen distance
- *  - Short repeat: One-byte repeat at a recently seen distance
- *
- * The symbol names are in from STATE_oldest_older_previous. REP means
- * either short or long repeated match, and NONLIT means any non-literal.
- */
-enum lzma_state {
-	STATE_LIT_LIT,
-	STATE_MATCH_LIT_LIT,
-	STATE_REP_LIT_LIT,
-	STATE_SHORTREP_LIT_LIT,
-	STATE_MATCH_LIT,
-	STATE_REP_LIT,
-	STATE_SHORTREP_LIT,
-	STATE_LIT_MATCH,
-	STATE_LIT_LONGREP,
-	STATE_LIT_SHORTREP,
-	STATE_NONLIT_MATCH,
-	STATE_NONLIT_REP
-};
-
-/* Total number of states */
-#define STATES 12
-
-/* The lowest 7 states indicate that the previous state was a literal. */
-#define LIT_STATES 7
-
-/* Indicate that the latest symbol was a literal. */
-static inline void lzma_state_literal(enum lzma_state *state)
-{
-	if (*state <= STATE_SHORTREP_LIT_LIT)
-		*state = STATE_LIT_LIT;
-	else if (*state <= STATE_LIT_SHORTREP)
-		*state -= 3;
-	else
-		*state -= 6;
-}
-
-/* Indicate that the latest symbol was a match. */
-static inline void lzma_state_match(enum lzma_state *state)
-{
-	*state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
-}
-
-/* Indicate that the latest state was a long repeated match. */
-static inline void lzma_state_long_rep(enum lzma_state *state)
-{
-	*state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
-}
-
-/* Indicate that the latest symbol was a short match. */
-static inline void lzma_state_short_rep(enum lzma_state *state)
-{
-	*state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
-}
-
-/* Test if the previous symbol was a literal. */
-static inline bool lzma_state_is_literal(enum lzma_state state)
-{
-	return state < LIT_STATES;
-}
-
-/* Each literal coder is divided in three sections:
- *   - 0x001-0x0FF: Without match byte
- *   - 0x101-0x1FF: With match byte; match bit is 0
- *   - 0x201-0x2FF: With match byte; match bit is 1
- *
- * Match byte is used when the previous LZMA symbol was something else than
- * a literal (that is, it was some kind of match).
- */
-#define LITERAL_CODER_SIZE 0x300
-
-/* Maximum number of literal coders */
-#define LITERAL_CODERS_MAX (1 << 4)
-
-/* Minimum length of a match is two bytes. */
-#define MATCH_LEN_MIN 2
-
-/* Match length is encoded with 4, 5, or 10 bits.
- *
- * Length   Bits
- *  2-9      4 = Choice=0 + 3 bits
- * 10-17     5 = Choice=1 + Choice2=0 + 3 bits
- * 18-273   10 = Choice=1 + Choice2=1 + 8 bits
- */
-#define LEN_LOW_BITS 3
-#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
-#define LEN_MID_BITS 3
-#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
-#define LEN_HIGH_BITS 8
-#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
-#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
-
-/*
- * Maximum length of a match is 273 which is a result of the encoding
- * described above.
- */
-#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
-
-/*
- * Different sets of probabilities are used for match distances that have
- * very short match length: Lengths of 2, 3, and 4 bytes have a separate
- * set of probabilities for each length. The matches with longer length
- * use a shared set of probabilities.
- */
-#define DIST_STATES 4
-
-/*
- * Get the index of the appropriate probability array for decoding
- * the distance slot.
- */
-static inline uint32_t lzma_get_dist_state(uint32_t len)
-{
-	return len < DIST_STATES + MATCH_LEN_MIN
-			? len - MATCH_LEN_MIN : DIST_STATES - 1;
-}
-
-/*
- * The highest two bits of a 32-bit match distance are encoded using six bits.
- * This six-bit value is called a distance slot. This way encoding a 32-bit
- * value takes 6-36 bits, larger values taking more bits.
- */
-#define DIST_SLOT_BITS 6
-#define DIST_SLOTS (1 << DIST_SLOT_BITS)
-
-/* Match distances up to 127 are fully encoded using probabilities. Since
- * the highest two bits (distance slot) are always encoded using six bits,
- * the distances 0-3 don't need any additional bits to encode, since the
- * distance slot itself is the same as the actual distance. DIST_MODEL_START
- * indicates the first distance slot where at least one additional bit is
- * needed.
- */
-#define DIST_MODEL_START 4
-
-/*
- * Match distances greater than 127 are encoded in three pieces:
- *   - distance slot: the highest two bits
- *   - direct bits: 2-26 bits below the highest two bits
- *   - alignment bits: four lowest bits
- *
- * Direct bits don't use any probabilities.
- *
- * The distance slot value of 14 is for distances 128-191.
- */
-#define DIST_MODEL_END 14
-
-/* Distance slots that indicate a distance <= 127. */
-#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
-#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
-
-/*
- * For match distances greater than 127, only the highest two bits and the
- * lowest four bits (alignment) is encoded using probabilities.
- */
-#define ALIGN_BITS 4
-#define ALIGN_SIZE (1 << ALIGN_BITS)
-#define ALIGN_MASK (ALIGN_SIZE - 1)
-
-/* Total number of all probability variables */
-#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
-
-/*
- * LZMA remembers the four most recent match distances. Reusing these
- * distances tends to take less space than re-encoding the actual
- * distance value.
- */
-#define REPS 4
-
-#endif
--- a/head/sys/contrib/xz-embedded/xz_malloc.c	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,22 +0,0 @@
-#include <sys/malloc.h>
-#include <sys/kernel.h>
-#include "xz_malloc.h"
-
-/* Wraper for XZ decompressor memmory pool */
-
-MALLOC_DEFINE(XZ_DEC, "XZ_DEC", "XZ decompressor data");
-
-void *
-xz_malloc(unsigned long size)
-{
-	void *addr;
-
-	addr = malloc(size, XZ_DEC, M_NOWAIT);
-	return (addr);
-}
-
-void
-xz_free(void *addr)
-{
-	free(addr, XZ_DEC);
-}
--- a/head/sys/contrib/xz-embedded/xz_malloc.h	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,8 +0,0 @@
-#ifndef __XZ_MALLOC_H__
-#define __XZ_MALLOC_H__
-
-void *xz_malloc(unsigned long size);
-void xz_free(void *addr);
-
-#endif /* __XZ_MALLOC_H__ */
-
--- a/head/sys/contrib/xz-embedded/xz_private.h	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,156 +0,0 @@
-/*
- * Private includes and definitions
- *
- * Author: Lasse Collin <[email protected]>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-#ifndef XZ_PRIVATE_H
-#define XZ_PRIVATE_H
-
-#ifdef __KERNEL__
-#	include <linux/xz.h>
-#	include <asm/byteorder.h>
-#	include <asm/unaligned.h>
-	/* XZ_PREBOOT may be defined only via decompress_unxz.c. */
-#	ifndef XZ_PREBOOT
-#		include <linux/slab.h>
-#		include <linux/vmalloc.h>
-#		include <linux/string.h>
-#		ifdef CONFIG_XZ_DEC_X86
-#			define XZ_DEC_X86
-#		endif
-#		ifdef CONFIG_XZ_DEC_POWERPC
-#			define XZ_DEC_POWERPC
-#		endif
-#		ifdef CONFIG_XZ_DEC_IA64
-#			define XZ_DEC_IA64
-#		endif
-#		ifdef CONFIG_XZ_DEC_ARM
-#			define XZ_DEC_ARM
-#		endif
-#		ifdef CONFIG_XZ_DEC_ARMTHUMB
-#			define XZ_DEC_ARMTHUMB
-#		endif
-#		ifdef CONFIG_XZ_DEC_SPARC
-#			define XZ_DEC_SPARC
-#		endif
-#		define memeq(a, b, size) (memcmp(a, b, size) == 0)
-#		define memzero(buf, size) memset(buf, 0, size)
-#	endif
-#	define get_le32(p) le32_to_cpup((const uint32_t *)(p))
-#else
-	/*
-	 * For userspace builds, use a separate header to define the required
-	 * macros and functions. This makes it easier to adapt the code into
-	 * different environments and avoids clutter in the Linux kernel tree.
-	 */
-#	include "xz_config.h"
-#endif
-
-/* If no specific decoding mode is requested, enable support for all modes. */
-#if !defined(XZ_DEC_SINGLE) && !defined(XZ_DEC_PREALLOC) \
-		&& !defined(XZ_DEC_DYNALLOC)
-#	define XZ_DEC_SINGLE
-#	define XZ_DEC_PREALLOC
-#	define XZ_DEC_DYNALLOC
-#endif
-
-/*
- * The DEC_IS_foo(mode) macros are used in "if" statements. If only some
- * of the supported modes are enabled, these macros will evaluate to true or
- * false at compile time and thus allow the compiler to omit unneeded code.
- */
-#ifdef XZ_DEC_SINGLE
-#	define DEC_IS_SINGLE(mode) ((mode) == XZ_SINGLE)
-#else
-#	define DEC_IS_SINGLE(mode) (false)
-#endif
-
-#ifdef XZ_DEC_PREALLOC
-#	define DEC_IS_PREALLOC(mode) ((mode) == XZ_PREALLOC)
-#else
-#	define DEC_IS_PREALLOC(mode) (false)
-#endif
-
-#ifdef XZ_DEC_DYNALLOC
-#	define DEC_IS_DYNALLOC(mode) ((mode) == XZ_DYNALLOC)
-#else
-#	define DEC_IS_DYNALLOC(mode) (false)
-#endif
-
-#if !defined(XZ_DEC_SINGLE)
-#	define DEC_IS_MULTI(mode) (true)
-#elif defined(XZ_DEC_PREALLOC) || defined(XZ_DEC_DYNALLOC)
-#	define DEC_IS_MULTI(mode) ((mode) != XZ_SINGLE)
-#else
-#	define DEC_IS_MULTI(mode) (false)
-#endif
-
-/*
- * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
- * XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
- */
-#ifndef XZ_DEC_BCJ
-#	if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
-			|| defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
-			|| defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
-			|| defined(XZ_DEC_SPARC)
-#		define XZ_DEC_BCJ
-#	endif
-#endif
-
-/*
- * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
- * before calling xz_dec_lzma2_run().
- */
-XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
-						   uint32_t dict_max);
-
-/*
- * Decode the LZMA2 properties (one byte) and reset the decoder. Return
- * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
- * big enough, and XZ_OPTIONS_ERROR if props indicates something that this
- * decoder doesn't support.
- */
-XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
-					 uint8_t props);
-
-/* Decode raw LZMA2 stream from b->in to b->out. */
-XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
-				       struct xz_buf *b);
-
-/* Free the memory allocated for the LZMA2 decoder. */
-XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
-
-#ifdef XZ_DEC_BCJ
-/*
- * Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
- * calling xz_dec_bcj_run().
- */
-XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call);
-
-/*
- * Decode the Filter ID of a BCJ filter. This implementation doesn't
- * support custom start offsets, so no decoding of Filter Properties
- * is needed. Returns XZ_OK if the given Filter ID is supported.
- * Otherwise XZ_OPTIONS_ERROR is returned.
- */
-XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
-
-/*
- * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
- * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
- * must be called directly.
- */
-XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
-				     struct xz_dec_lzma2 *lzma2,
-				     struct xz_buf *b);
-
-/* Free the memory allocated for the BCJ filters. */
-#define xz_dec_bcj_end(s) kfree(s)
-#endif
-
-#endif
--- a/head/sys/contrib/xz-embedded/xz_stream.h	Tue Jan 10 02:54:38 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,62 +0,0 @@
-/*
- * Definitions for handling the .xz file format
- *
- * Author: Lasse Collin <[email protected]>
- *
- * This file has been put into the public domain.
- * You can do whatever you want with this file.
- */
-
-#ifndef XZ_STREAM_H
-#define XZ_STREAM_H
-
-#if defined(__KERNEL__) && !XZ_INTERNAL_CRC32
-#	include <linux/crc32.h>
-#	undef crc32
-#	define xz_crc32(buf, size, crc) \
-		(~crc32_le(~(uint32_t)(crc), buf, size))
-#endif
-
-/*
- * See the .xz file format specification at
- * http://tukaani.org/xz/xz-file-format.txt
- * to understand the container format.
- */
-
-#define STREAM_HEADER_SIZE 12
-
-#define HEADER_MAGIC "\3757zXZ"
-#define HEADER_MAGIC_SIZE 6
-
-#define FOOTER_MAGIC "YZ"
-#define FOOTER_MAGIC_SIZE 2
-
-/*
- * Variable-length integer can hold a 63-bit unsigned integer or a special
- * value indicating that the value is unknown.
- *
- * Experimental: vli_type can be defined to uint32_t to save a few bytes
- * in code size (no effect on speed). Doing so limits the uncompressed and
- * compressed size of the file to less than 256 MiB and may also weaken
- * error detection slightly.
- */
-typedef uint64_t vli_type;
-
-#define VLI_MAX ((vli_type)-1 / 2)
-#define VLI_UNKNOWN ((vli_type)-1)
-
-/* Maximum encoded size of a VLI */
-#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
-
-/* Integrity Check types */
-enum xz_check {
-	XZ_CHECK_NONE = 0,
-	XZ_CHECK_CRC32 = 1,
-	XZ_CHECK_CRC64 = 4,
-	XZ_CHECK_SHA256 = 10
-};
-
-/* Maximum possible Check ID */
-#define XZ_CHECK_MAX 15
-
-#endif